Modul CS4575-KP04
Sequence Learning (SEQL)
Dauer
1 Semester
Angebotsturnus
Jedes Sommersemester
Leistungspunkte
4
Studiengang, Fachgebiet und Fachsemester:
- Master Informatik 2019, Wahlpflicht, Wahlpflicht, Beliebiges Fachsemester
- Master Medizinische Informatik 2019, Wahlpflicht, Medical Data Science / Künstliche Intelligenz, 1. oder 2. Fachsemester
- Master Psychologie 2016, Wahlpflicht, Wahlpflicht, Beliebiges Fachsemester
- Master Biophysik 2023, Wahlpflicht, Wahlpflicht, Beliebiges Fachsemester
- Master Medieninformatik 2020, Wahlpflicht, Wahlpflicht, Beliebiges Fachsemester
- Master Medizinische Ingenieurwissenschaft 2020, Wahlpflicht, Wahlpflicht, Beliebiges Fachsemester
- Master Entrepreneurship in digitalen Technologien 2020, Wahlpflicht, fachspezifisch, Beliebiges Fachsemester
- Master Psychologie - Cognitive Systems 2022, Wahlpflicht, Psychologie, Beliebiges Fachsemester
- Master Psychologie - Cognitive Systems 2027, Wahlpflicht, Psychologie, Beliebiges Fachsemester
Lehrveranstaltungen:
- CS4575-V: Sequence Learning (Vorlesung, 2 SWS)
- CS4575-Ü: Sequence Learning (Übung, 1 SWS)
Workload:
- 75 Stunden Selbststudium
- 45 Stunden Präsenzstudium
Lehrinhalte:
- Introduction to Sequence Learning (Formalisms, Metrics, Recapitulation of Relevant Machine Learning Techniques)
- Recurrent Neural Networks (Simple RNN Models, Backpropagation Through Time)
- Gated Recurrent Networks (Vanishing Gradient Problem in RNNs, Long Short-Term Memories, Gated Recurrent Units, Stacked RNNs)
- Important Techniques for RNNs (Teacher Forcing, Scheduled Sampling, h-Detach)
- Bidirectional RNNs and related concepts
- Hierarchical RNNs and Learning on Multiple Time Scales
- Online Learning and Learning without BPTT (Real-Time Recurrent Learning, e-Prop, Forward Propagation Through Time)
- Reservoir Computing (Echo State Networks, Deep ESNs)
- Spiking Neural Networks (Spiking Neuron Models, Learning in SNNs, Neuromorphic Computing, Recurrent SNNs)
- Temporal Convolution Networks (Causal Convolution, Temporal Dilation, TCN-ResNets)
- Introduction to Transformers (Sequence-to-Sequence Learning, Basics on Attention, Self-Attention and the Query-Key-Value Principle, Large Language Models)
- State Space Models (Structured State Space Sequence Models, Mamba)
Qualifikationsziele/Kompetenzen:
- Students get a comprehensive understanding of most relevant sequence learning approaches
- Students learn to analyze the challenges in sequence learning tasks and to identify well-suited approaches to solve them
- Students will understand the pros and cons of various sequence learning models
- Students can implement common and custom sequence learning models for time series analysis, classification, and forecasting
- Students know how to analyze the models and results, to improve the model parameters, and to interpret the model predictions and their relevance
Vergabe von Leistungspunkten und Benotung durch:
- Klausur oder mündliche Prüfung nach Maßgabe des Dozenten
Modulverantwortliche:
- Prof. Dr. Sebastian Otte
Lehrende:
- Institut für Robotik und Kognitive Systeme
- MitarbeiterInnen des Instituts
- Prof. Dr. Sebastian Otte
Literatur:
- Goodfellow, I., Bengio, Y., & Courville, A. (2016) : Deep Learning MIT Press. ISBN 978-0262035613
- Prince, S. J. D. (2023) : Understanding Deep Learning The MIT Press. ISBN 978-0262048644
- Deisenroth, M. P., Faisal, A. A., & Ong, C. S. (2020) : Mathematics for Machine Learning Cambridge University Press, 2020. ISBN 978-1108470049
- Nakajima, K., & Fischer, I. (2021) : Reservoir Computing: Theory, Physical Implementations, and Applications Cambridge University Press, 2020. ISBN 978-1108470049
- Sun, R., & Giles, C. (2001) : Sequence Learning: Paradigms, Algorithms, and Applications Springer Berlin Heidelberg. ISBN 978-3540415978
- Bishop, C. M. (2006) : Pattern Recognition and Machine Learning Springer. ISBN 978-0387310732
- Recent publications on the related topics :
Sprache:
- Wird nur auf Englisch angeboten
Bemerkungen:
Admission requirements for taking the module:- None, but it is recommended to complete the course Deep Learning (CS4295-KP04) first
Admission requirements for participation in module examination(s):
- Successful completion of exercise assignments as specified at the beginning of the semester
Module Exam(s):
- CS4575-L1: Sequence Learning, exam, 90 min
Laut Beschluss des Prüfungsausschusses Informatik vom 19.8.2024 kann dieses Modul von Studierenden Master Informatik SGO ab 2019 im Bereich 5. Wahlpflichtfach gewählt werden.
Letzte Änderungen:
16.07.2025