Modul CS4575-KP04

Sequence Learning (SEQL)


Dauer

1 Semester

Angebotsturnus

Jedes Sommersemester

Leistungspunkte

4

Studiengang, Fachgebiet und Fachsemester:

  • Master Informatik 2019, Wahlpflicht, Wahlpflicht, Beliebiges Fachsemester
  • Master Medizinische Informatik 2019, Wahlpflicht, Medical Data Science / Künstliche Intelligenz, 1. oder 2. Fachsemester
  • Master Psychologie 2016, Wahlpflicht, Wahlpflicht, Beliebiges Fachsemester
  • Master Biophysik 2023, Wahlpflicht, Wahlpflicht, Beliebiges Fachsemester
  • Master Medieninformatik 2020, Wahlpflicht, Wahlpflicht, Beliebiges Fachsemester
  • Master Medizinische Ingenieurwissenschaft 2020, Wahlpflicht, Wahlpflicht, Beliebiges Fachsemester
  • Master Entrepreneurship in digitalen Technologien 2020, Wahlpflicht, fachspezifisch, Beliebiges Fachsemester
  • Master Psychologie - Cognitive Systems 2022, Wahlpflicht, Psychologie, Beliebiges Fachsemester
  • Master Psychologie - Cognitive Systems 2027, Wahlpflicht, Psychologie, Beliebiges Fachsemester

Lehrveranstaltungen:

  • CS4575-V: Sequence Learning (Vorlesung, 2 SWS)
  • CS4575-Ü: Sequence Learning (Übung, 1 SWS)

Workload:

  • 75 Stunden Selbststudium
  • 45 Stunden Präsenzstudium

Lehrinhalte:

  • Introduction to Sequence Learning (Formalisms, Metrics, Recapitulation of Relevant Machine Learning Techniques)
  • Recurrent Neural Networks (Simple RNN Models, Backpropagation Through Time)
  • Gated Recurrent Networks (Vanishing Gradient Problem in RNNs, Long Short-Term Memories, Gated Recurrent Units, Stacked RNNs)
  • Important Techniques for RNNs (Teacher Forcing, Scheduled Sampling, h-Detach)
  • Bidirectional RNNs and related concepts
  • Hierarchical RNNs and Learning on Multiple Time Scales
  • Online Learning and Learning without BPTT (Real-Time Recurrent Learning, e-Prop, Forward Propagation Through Time)
  • Reservoir Computing (Echo State Networks, Deep ESNs)
  • Spiking Neural Networks (Spiking Neuron Models, Learning in SNNs, Neuromorphic Computing, Recurrent SNNs)
  • Temporal Convolution Networks (Causal Convolution, Temporal Dilation, TCN-ResNets)
  • Introduction to Transformers (Sequence-to-Sequence Learning, Basics on Attention, Self-Attention and the Query-Key-Value Principle, Large Language Models)
  • State Space Models (Structured State Space Sequence Models, Mamba)

Qualifikationsziele/Kompetenzen:

  • Students get a comprehensive understanding of most relevant sequence learning approaches
  • Students learn to analyze the challenges in sequence learning tasks and to identify well-suited approaches to solve them
  • Students will understand the pros and cons of various sequence learning models
  • Students can implement common and custom sequence learning models for time series analysis, classification, and forecasting
  • Students know how to analyze the models and results, to improve the model parameters, and to interpret the model predictions and their relevance

Vergabe von Leistungspunkten und Benotung durch:

  • Klausur oder mündliche Prüfung nach Maßgabe des Dozenten

Modulverantwortliche:

  • Prof. Dr. Sebastian Otte

Lehrende:

Literatur:

  • Goodfellow, I., Bengio, Y., & Courville, A. (2016) : Deep Learning MIT Press. ISBN 978-0262035613
  • Prince, S. J. D. (2023) : Understanding Deep Learning The MIT Press. ISBN 978-0262048644
  • Deisenroth, M. P., Faisal, A. A., & Ong, C. S. (2020) : Mathematics for Machine Learning Cambridge University Press, 2020. ISBN 978-1108470049
  • Nakajima, K., & Fischer, I. (2021) : Reservoir Computing: Theory, Physical Implementations, and Applications Cambridge University Press, 2020. ISBN 978-1108470049
  • Sun, R., & Giles, C. (2001) : Sequence Learning: Paradigms, Algorithms, and Applications Springer Berlin Heidelberg. ISBN 978-3540415978
  • Bishop, C. M. (2006) : Pattern Recognition and Machine Learning Springer. ISBN 978-0387310732
  • Recent publications on the related topics :

Sprache:

  • Wird nur auf Englisch angeboten

Bemerkungen:

Admission requirements for taking the module:
- None, but it is recommended to complete the course Deep Learning (CS4295-KP04) first

Admission requirements for participation in module examination(s):
- Successful completion of exercise assignments as specified at the beginning of the semester

Module Exam(s):
- CS4575-L1: Sequence Learning, exam, 90 min

Laut Beschluss des Prüfungsausschusses Informatik vom 19.8.2024 kann dieses Modul von Studierenden Master Informatik SGO ab 2019 im Bereich 5. Wahlpflichtfach gewählt werden.

Letzte Änderungen:

16.07.2025